Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 29, 2026
-
Quantum image processing (QIP) is an emerging field that integrates image processing with the principles of quantum computing (QC). As quantum technologies advance, researchers face new opportunities and challenges in developing efficient QIP techniques. This paper provides an overview of quantum image representations, with a focus on two prominent encoding schemes: Novel Enhanced Quantum Representation (NEQR) and Fourier-based Quantum Image Representation (FRQI). We compare their performance in noisy quantum environments by evaluating qubit requirements, image quality, and computational efficiency. The study further analyzes the impact of quantum gate errors and qubit limitations on image reconstruction fidelity. We also compare GPU and QPU performance to highlight their strengths and weaknesses. Our findings stress the importance of error mitigation, advancements in quantum hardware, and the advancements of quantum-classical hybrid systems to drive future progress in QIP.more » « lessFree, publicly-accessible full text available June 29, 2026
-
Free, publicly-accessible full text available May 4, 2026
-
Free, publicly-accessible full text available August 6, 2026
-
Free, publicly-accessible full text available August 6, 2026
-
Free, publicly-accessible full text available June 22, 2026
-
Free, publicly-accessible full text available June 22, 2026
-
Hyperdimensional computing (HDC) is a novel computational paradigm that operates on long-dimensional vectors known as hypervectors. The hypervectors are constructed as long bit-streams and form the basic building blocks of HDC systems. In HDC, hypervectors are generated from scalar values without considering bit significance. HDC is efficient and robust for various data processing applications, especially computer vision tasks. To construct HDC models for vision applications, the current state-of-the-art practice utilizes two parameters for data encoding: pixel intensity and pixel position. However, the intensity and position information embedded in high-dimensional vectors are generally not generated dynamically in the HDC models. Consequently, the optimal design of hypervectors with high model accuracy requires powerful computing platforms for training. A more efficient approach is to generate hypervectors dynamically during the training phase. To this aim, this work uses low-discrepancy sequences to generate intensity hypervectors, while avoiding position hypervectors. Doing so eliminates the multiplication step in vector encoding, resulting in a power-efficient HDC system. For the first time in the literature, our proposed approach employs lightweight vector generators utilizing unary bit-streams for efficient encoding of data instead of using conventional comparator-based generators.more » « less
-
Hyperdimensional computing (HDC) is a novel computational paradigm that operates on long-dimensional vectors known as hypervectors. The hypervectors are constructed as long bit-streams and form the basic building blocks of HDC systems. In HDC, hypervectors are generated from scalar values without considering bit significance. HDC is efficient and robust for various data processing applications, especially computer vision tasks. To construct HDC models for vision applications, the current state-of-the-art practice utilizes two parameters for data encoding: pixel intensity and pixel position. However, the intensity and position information embedded in high-dimensional vectors are generally not generated dynamically in the HDC models. Consequently, the optimal design of hypervectors with high model accuracy requires powerful computing platforms for training. A more efficient approach is to generate hypervectors dynamically during the training phase. To this aim, this work uses low-discrepancy sequences to generate intensity hypervectors, while avoiding position hypervectors. Doing so eliminates the multiplication step in vector encoding, resulting in a power-efficient HDC system. For the first time in the literature, our proposed approach employs lightweight vector generators utilizing unary bit-streams for efficient encoding of data instead of using conventional comparator-based generators.more » « less
-
Inspired by the human brain, Hyperdimensional Computing (HDC) processes information efficiently by operating in high-dimensional space using hypervectors. While previous works focus on optimizing pre-generated hypervectors in software, this study introduces a novel on-the-fly vector generation method in hardware with O(1) complexity, compared to the O(N) iterative search used in conventional approaches to find the best orthogonal hypervectors. Our approach leverages Hadamard binary coefficients and unary computing to simplify encoding into addition-only operations after the generation stage in ASIC, implemented using in-memory computing. The proposed design significantly improves accuracy and computational efficiency across multiple benchmark datasets.more » « lessFree, publicly-accessible full text available June 22, 2026
An official website of the United States government

Full Text Available